Sources Of Drinking Water in Southlake, Texas

Where does Southlake get its water from? Southlake uses surface water from Lake Lewisville and Lake Ray Roberts for its water supply. Drinking water, both tap and bottled, can come from a variety of sources including rivers, lakes, streams, reservoirs, and springs. As water travels over the land’s surface or through the ground, it dissolves naturally occurring minerals and radioactive material and can be polluted by animal or human activity. Is Southlake's water safe to drink? Does Southlake put fluoride in the water?

Source: City of Southlake

Contaminants Found in Southlake's Water Supply

(Detected above health guidelines)

Bromate

3rd party independent testing found that this utility exceeds health guidelines for this drinking water contaminant. Bromate may be formed in water during ozonation when the bromide ion is present. Under certain conditions, bromate may also be formed in concentrated hypochlorite solutions used to disinfect drinking-water. Bromate is usually found in drinking water as a result of water treatment, rather than through source water contamination. What are the risks of drinking tap water with Bromate? Kidney Issues. Exposure to large amounts of bromate for a long period of time caused kidney effects in laboratory animals. Long-term exposure to high levels of bromate has also caused cancer in rats. Whether bromate can cause cancer in people is not known. Some people may be at greater risk for developing health effects from bromate exposure or have concerns for their pregnancy or nursing infant. Because bromate can cause health effects in kidneys, it is possible that those with pre-existing kidney conditions could be at greater risk. Find out more about this contaminant and how to remove it here.

 
Bromodichloromethane

3rd party independent testing found that this utility exceeds health guidelines for this drinking water contaminant. Bromodichloromethane is one of the total trihalomethanes (TTHMs) that formed when disinfectants, such as chlorine, are used to treat tap water. What are the risks of drinking tap water with Bromodichloromethane? Cancer, Kidney & Liver Damage. Bromodichloromethane and other disinfection byproducts increase the risk of cancer and may cause problems during pregnancy.  In recent animal studies, the main effect of eating or drinking large amounts of Bromodichloromethane is injury to the liver and kidneys. Find out more about this contaminant and how to remove it here..

Chloroform

3rd party independent testing found that this utility exceeds health guidelines for this drinking water contaminant. Chloroform, is a total trihalomethanes (TTHMs) which is formed when disinfectants are used to treat tap water. Most of the chloroform found in the environment comes from industry. Chloroform enters the environment from chemical companies and paper mills, It is also found in waste water from sewage treatment plants and drinking water to which chlorine has been added. Chlorine is added to most drinking water and many waste waters to destroy bacteria. Small amounts of chloroform are formed as an unwanted product during the process of adding chlorine to water. What are the risks of drinking tap water with chloroform? Cancer, central nervous system (brain), liver, and kidneys. Cancer of the liver and kidneys developed in rats and mice that ate food or drank water that had large amounts of chloroform in it for a long time. We do not know whether liver and kidney cancer would develop in people after long-term exposure to chloroform in drinking water. Based on animal studies, the Department of Health and Human Services has determined that chloroform may reasonably be anticipated to be a carcinogen (a substance that causes cancer). Find out more about this contaminant and how to remove it here.

Dibromochloromethane

3rd party independent testing found that this utility exceeds health guidelines for this drinking water contaminant. Dibromochloromethane, one of the total trihalomethanes (TTHMs), was used in the past to make other chemicals such as fire extinguisher fluids, spray can propellants, refrigerator fluid, and pesticides. It is now only used on a small scale in laboratories. In the environment, dibromochloromethane is not found as a pure liquid, but instead, it is found either dissolved in water or evaporated into the air as a gas. What are the risks of drinking tap water with Dibromochloromethane? Liver & Kidney Damage. Animal studies indicate that long-term intake of dibromochloromethane can cause liver and kidney cancer. Find out more about this contaminant and how to remove it here.

Dichloroacetic Acid

3rd party independent testing found that this utility exceeds health guidelines for this drinking water contaminant. Dichloroacetic Acid is one of the five haloacetic acids and a member of the chloroacetic acids family. It is an essential chemical compound in medical research, especially in cancer treatment. This type of chloroacetic acid is a trace product of the process of chlorination of drinking water. Dichloroacetic Acid can get into water systems through improper disposal of waste from pharmaceutical factories. What are the risks of drinking tap water with Dichloroacetic acid? Cancer, Reproductive Issues, Child Development. Dichloroacetic Acid in drinking water may cause health problems during pregnancy, liver and kidney damage, reproductive difficulties, eyes and nerve problems, and an increased risk of getting cancer. Dichloroacetic Acid is common in municipal water since it is a trace product of the chlorination of drinking water.  Find out more about this contaminant and how to remove it here.

Nitrate

3rd party independent testing found that this water utility exceeds health guidelines for this drinking water contaminant. Nitrate is one of the most common groundwater contaminants in rural areas. Nitrate gets into water from fertilizer runoff, manure from large animal feeding operations and wastewater treatment plant effluent. It is regulated in drinking water primarily because excess levels can cause methemoglobinemia, or "blue baby" disease. What are the risks of drinking tap water with nitrate? Cancer & Child Development. Scientists at the National Cancer Institute found a greater incidence of bladder cancer among people who drank water with nitrate concentrations above half the federal limit. Some studies also report that nitrate contamination of tap water can increase the risk of developmental defects for children born to mothers who drank nitrate-contaminated water during pregnancy. Find out more about this contaminant and how to remove it here.  

Radiological Contaminants 

3rd party independent testing found that this utility exceeds health guidelines for this drinking water contaminant. Radiological contamination of water is due to the presence of radionuclides, which are defined as atoms with unstable nuclei. In an effort to become more stable, a radionuclide emits energy in the form of rays or high-speed particles. This is called ionizing radiation because it displaces electrons, which creates ions. The three major types of ionizing radiation are alpha particles, beta particles and gamma rays. Radiological contaminants leach into water from certain minerals and from mining. What are the risks of drinking tap water with Radiological contaminants? Cancer. Over and over again, regardless of the source, long-term exposure or brief exposure in high doses, leads to cancer. Cancers of the bone, liver, stomach, lungs, skin, kidneys, thyroid gland, and most other tissues are common, and medical science is still discovering other maladies that may be cancer-related. Find out more about this contaminant and how to remove it here.

Total Trihalomethanes (TTHMs)

3rd party independent testing found that this utility exceeds health guidelines for this drinking water contaminant. Total Trihalomethanes (TTHMs) are the result of a reaction between the chlorine used for disinfecting tap water and natural organic matter in the water. At elevated levels, TTHMs have been associated with negative health effects such as cancer and adverse reproductive outcomes. Now a study by government and academic researchers adds to previous evidence that dermal absorption and inhalation of TTHMs associated with everyday tap water use can result in significantly higher blood TTHM concentrations than simply drinking the water does. What are the risks of drinking tap water with Total Trihalomethanes (TTHMs)? Cancer. Studies from around the world including the United States & Europe have found that drinking tap water that carries Total Trihalomethanes increases the risk of developing cancer. In animal studies, all trihalomethanes cause liver, kidney and intestinal tumors. Find out more about this contaminant and how to remove it here.

What are the best types of filters to remove these contaminants?

Water sources can contain contaminants that impact your long term health, the taste & smell of the water and other microbiological contaminants that can actually make people sick shortly after drinking. Fortunately, there are water filtration products that remove many of the impurities from water. These filters often use activated carbon. Activated carbon is a form of carbon processed to have small, low-volume pores that increase the surface area available for adsorption of contaminants or chemical reactions. Two dominant carbon filter choices are solid activated carbon blocks and granular activated carbon filters.

Filter Design

Granular activated carbon filters have loose granules of carbon that look like black grains of sand. These black grains of carbon, are dumped into a container and the water is forced to travel through the container to reach the other side, passing by all of the grains of carbon. Solid block carbon filters are blocks of compressed activated carbon that are formed with the combination of heat and pressure. These filters force the water to try to find a way through the solid wall and thousands of layers of carbon until the reach a channel which leads the water out of the filter. Both filters are made from carbon that’s ground into small particulate sizes. Solid carbon blocks are ground even further into a fine mesh 7 to 19 times smaller than the granular activated carbon filters.

Flow Channels & Less Contact Time 

As water continually pass through Granular Activated Carbon filters, flow channels begin to develop that allows the water to flow around the carbon. Flow channels also develop between the granules, leading to less effective filtration as there’s less contact between the water and carbon. Solid carbon blocks are much tighter and won’t even let through microbial cysts like giardia and cryptosporidium (7 to 10 Microns in size). However, solid carbon block filters are so tight that they can often get plugged up with organic & non-organic matter, forcing owners to replace them on a more regular basis. This is why when you are using a Brita water pitcher filter (granular activated carbon), the filter will keep going and going long after it has stopped removing any water contaminants. 

Carbon Block vs Granulated Activated Carbon 

The granular activated carbon filters are cheap and simple to manufacture, which is why most water filtration companies choose this method for manufacturing (ex: Brita, Woder). Solid Carbon Block Filters on the other hand take longer to manufacture and are more expensive but with this expense, you get superior contaminant removal because the water must take a tortured path through thousands of layers of compressed carbon before it reaches your drinking glass.

Better Filtration

The solid carbon block filters like the one used in the Epic Smart Shield & Epic Water Filter pitchers, remove more contaminants than the granular activated carbon filters due to the larger surface area and the tighter filters, this is why Epic Water Filters has standardized on the solid carbon block design for our water pitchers and our under the sink water filter. Unfortunately, granular activated carbon filters do not do enough to reduce contaminants, this is why they are not used when there is a chance of bacteria or cysts in the water. They are truly not "Epic" so that is why we have passed on this design and let our competitors like Woder, Brita, Pur, and Invigorated Water use these loose packed carbon filters for sub-par contaminant removal.

Solid carbon block filters, on the other hand, have millions and millions of different sized pores that cause the water to take a long slow path to get through the filter, increasing the contact time that the contaminated water has with the carbon. During this contact time is when contaminants adhere to the carbon and are removed from water. This happens during a process called adsorption, the other filtration method that carbon blocks use is called depth filtration where the thickness of the filter comes into play to help remove contaminants as they have to pass through this carbon walls. 

With solid carbon block filters the contaminants are in contact with more carbon for a longer period and therefore have more time to remove stubborn contaminants like lead (Epic Pure Pitcher 99.9% removal), fluoride (Epic Pure Pitcher 97.8% removal), and PFCs (Epic Pure Pitcher 99.8% removal). Carbon blocks can remove chlorine more effectively, eliminate undesirable odors, and removal of endocrine disruptors like volatile organic compounds. Granular activated carbon filters, on the other hand, have small particles that move around under the pressure of water so they do not have as much uniformity throughout and therefore less contact time with the water and less contaminant removal. 

What about Reverse Osmosis? 

RO filters are good at contaminant removal. The downside of RO is that it wastes a lot of water. Each RO system wastes an average of 5 to 6 gallons for every gallon it produces of drinking water. Also RO systems remove trace minerals and other beneficial substances found in water that your body needs (calcium, manganese, iron and other important nutrients). This is why RO water is considered by many in the natural health world to be dead water and it is said that demineralized water is detrimental to general health due to vitamin and mineral depletion. The last downside of RO systems is that after your water passes through the filter process, it sits inside of steel drum that is lined with a butyl rubber bladder which is made from polyisobutylene. The filtered water sits in this butyl rubber bladder until it is used. All rubber and plastic containers leach into water at some level. Carbon block filters do not have this issue. 

Epic Pure Pitcher

April Jones

A Colorado based hiker, blogger, and water quality expert.

Impacted Zip Codes: 76092