Sources Of Drinking Water in Appleton, Wisconsin

Where does Appleton get its water from?  The City of Appleton obtains its water from Lake Winnebago and treats it with a multiple-step process that removes illness-causing micro-organisms and contaminants. Water Treatment is managed under the Director of Utilities. Source water can be contaminated by microbial, inorganic, synthetic organic, volatile organic, precursors of disinfection by-products and radioactive contaminants. These contaminants can enter source water through various means. 

Pathways of contamination can be split into two major categories, point source pollution and nonpoint source pollution. Point source pollution includes specific, identifiable dischargers of contaminants. Examples of these include industrial and municipal wastewater outfalls. Point source dischargers are more easily regulated and held accountable for contaminating source water. Nonpoint source pollution comes from no specific source and diffusely enters source water. Examples of nonpoint source pollution include runoff from land cover and atmospheric deposition. 

With a surface area of nearly 138,000 acres, Lake Winnebago is the largest lake in the state. Its maximum depth is only 21 feet. With an average depth of 15.5 feet, the lake has a calculated volume of 696 billion gallons. It has a length of about 28 miles and a width of about 10 miles. Lake Winnebago normally experiences ice over from late December to April. These physical characteristics coupled with resuspension of sediments by wind and high pollutant loading associated with land activities throughout the source water area combine to make Lake Winnebago a warm water, highly productive, lake with poor water quality. Wind Wind plays a major role in the water quality of Lake Winnebago. Wind frequently suspends sediments in the lake water. Locally, this churns and redistributes contaminants that would normally remain in lake bottom sediments. 

The extent of lake-wide redistribution and mixing caused by wind is not fully understood. Water Quality Existing monitoring data indicates that Appleton’s source water is highly turbid with poor water quality for microbial, organic and inorganic parameters. Generally, water quality is highest during late winter. This is due to lower inputs from the source water area and ice cover preventing resuspension of sediments. Water quality is lowest during late summer and early fall when wind storms of varying direction resuspend sediments, water temperatures rise, and more pollutant loading from the source water area occurs. Day-today fluctuations in water quality occur as a result of wind. Periods of southerly winds often coincide with poor source water quality. Spring runoff from melt water strongly affects seasonal and long-term water quality in Lake Winnebago. It is important to note that water quality data of source water at the intakes is based almost entirely on periodic monitoring that occurs at the drinking water intakes. Is Appleton's water safe to drink? Does Appleton put fluoride in its water?

Source: City of Appleton, Wisconsin

Contaminants Found in Appleton, Wisconsin's Water Supply

(Detected above health guidelines)

Arsenic 

 3rd party independent testing found that this utility exceeds health guidelines for this drinking water contaminant. Arsenic occurs naturally in soil and bedrock in parts of the United States. Commercial activities that could have left arsenic in our soil and water include, apple orchard spraying, coal ash disposal, use of pressure treated wood. Arsenic has no smell, taste, or color when dissolved in water, even in high concentrations, so only laboratory analysis can detect its presence and concentration.  What are the risks of drinking tap water with arsenic? Cancer. Chronic exposure to arsenic is also associated with an increased risk of skin, bladder, and lung cancer. There is also evidence that long-term exposure to arsenic can increase risks for kidney and prostate cancer. Find out more about this contaminant and how to remove it here.

Bromodichloromethane

3rd party independent testing found that this utility exceeds health guidelines for this drinking water contaminant. Bromodichloromethane is one of the total trihalomethanes (TTHMs) that formed when disinfectants, such as chlorine, are used to treat tap water. What are the risks of drinking tap water with Bromodichloromethane? Cancer, Kidney & Liver Damage. Bromodichloromethane and other disinfection byproducts increase the risk of cancer and may cause problems during pregnancy.  In recent animal studies, the main effect of eating or drinking large amounts of Bromodichloromethane is injury to the liver and kidneys. Find out more about this contaminant and how to remove it here.

Chloroform

3rd party independent testing found that this water utility exceeds health guidelines for this drinking water contaminant. Chloroform, is a total trihalomethanes (TTHMs) which is formed when disinfectants are used to treat tap water. Most of the chloroform found in the environment comes from industry. Chloroform enters the environment from chemical companies and paper mills, It is also found in waste water from sewage treatment plants and drinking water to which chlorine has been added. Chlorine is added to most drinking water and many waste waters to destroy bacteria. Small amounts of chloroform are formed as an unwanted product during the process of adding chlorine to water. What are the risks of drinking tap water with chloroform? Cancer, central nervous system (brain), liver, and kidneys. Cancer of the liver and kidneys developed in rats and mice that ate food or drank water that had large amounts of chloroform in it for a long time. We do not know whether liver and kidney cancer would develop in people after long-term exposure to chloroform in drinking water. Based on animal studies, the Department of Health and Human Services has determined that chloroform may reasonably be anticipated to be a carcinogen (a substance that causes cancer). Find out more about this contaminant and how to remove it here.

Chromium (Hexavalent)

3rd party independent testing found that this water utility exceeds health guidelines for this drinking water contaminant. The movie Erin Brockovich alerted the public to the great suffering the little town of Hinkley, California experienced due to hexavalent chromium in their drinking water. Today, Hinkley is little more than a ghost town thanks to continued water contamination, health concerns, and plummeting property values. Chromium (hexavalent) is a carcinogen that commonly contaminates American drinking water. Chromium (hexavalent) in drinking water may be due to industrial pollution or natural occurrences in mineral deposits and groundwater. What are the risks of drinking tap water with Chromium (hexavalent)? Cancer. A 2008 study by the National Toxicology Program, part of the National Institutes of Health, found that chromium-6 in drinking water caused cancer in laboratory rats and mice. That study and other research led scientists at the California Office of Environmental Health Hazard Assessment to conclude that chromium-6 can cause cancer in people. Find out more about this contaminant and how to remove it here.

Dichloroacetic Acid 

3rd party independent testing found that this water utility exceeds health guidelines for this drinking water contaminant. Dichloroacetic Acid is one of the five haloacetic acids and a member of the chloroacetic acids family. It is an essential chemical compound in medical research, especially in cancer treatment. This type of chloroacetic acid is a trace product of the process of chlorination of drinking water. Dichloroacetic Acid can get into water systems through improper disposal of waste from pharmaceutical factories. What are the risks of drinking tap water with Dichloroacetic acid? Cancer, Reproductive Issues, Child Development. Dichloroacetic Acid in drinking water may cause health problems during pregnancy, liver and kidney damage, reproductive difficulties, eyes and nerve problems, and an increased risk of getting cancer. Dichloroacetic Acid is common in municipal water since it is a trace product of the chlorination of drinking water.  Find out more about this contaminant and how to remove it here.

Fluoride

There is a drinking water standard of 4 ppm for fluoride but there is no health guideline for this contaminant and much is not known about the effects of fluoride long term on the human body. This water utility did not exceed the drinking water standard for fluoride but fluoride was found in their water. Fluoride occurs naturally in surface and groundwater and is also added to drinking water by many water systems. The fluoride that is added to water is not the naturally occurring kind, the main chemicals used to fluoridate drinking water are known as “silicofluorides” (i.e., hydrofluorosilicic acid and sodium fluorosilicate). Silicofluorides are not pharmaceutical-grade fluoride products; they are unprocessed industrial by-products of the phosphate fertilizer industry (Gross!). Since these silicofluorides undergo no purification procedures, they can contain elevated levels of arsenic — more so than any other water treatment chemical. In addition, recent research suggests that the addition of silicofluorides to water is a risk factor for elevated lead exposure, particularly among residents who live in homes with old pipes. What are the risks of drinking tap water with Fluoride? Unknown. A growing body of evidence reasonably indicates that fluoridated water, in addition to other sources of daily fluoride exposure, can cause or contribute to a range of serious effects, including neurological issues, arthritis, damage to the developing brain, reduced thyroid function, and possibly osteosarcoma (bone cancer) in adolescent males. Animal studies indicate a moderate level of evidence that support adverse effects on learning and memory in animals exposed to fluoride in the diet or drinking water. Find out more about this contaminant and how to remove it here.

Nitrate

3rd party independent testing found that this water utility exceeds health guidelines for this drinking water contaminant. Nitrate is one of the most common groundwater contaminants in rural areas. Nitrate gets into water from fertilizer runoff, manure from large animal feeding operations and wastewater treatment plant effluent. It is regulated in drinking water primarily because excess levels can cause methemoglobinemia, or "blue baby" disease. What are the risks of drinking tap water with nitrate? Cancer & Child Development. Scientists at the National Cancer Institute found a greater incidence of bladder cancer among people who drank water with nitrate concentrations above half the federal limit. Some studies also report that nitrate contamination of tap water can increase the risk of developmental defects for children born to mothers who drank nitrate-contaminated water during pregnancy. Find out more about this contaminant and how to remove it here.

Radiological contaminants

3rd party independent testing found that this water utility exceeds health guidelines for this drinking water contaminant. Radiological contamination of water is due to the presence of radionuclides, which are defined as atoms with unstable nuclei. In an effort to become more stable, a radionuclide emits energy in the form of rays or high-speed particles. This is called ionizing radiation because it displaces electrons, which creates ions. The three major types of ionizing radiation are alpha particles, beta particles and gamma rays. Radiological contaminants leach into water from certain minerals and from mining. What are the risks of drinking tap water with Radiological contaminants? Cancer. Over and over again, regardless of the source, long-term exposure or brief exposure in high doses, leads to cancer. Cancers of the bone, liver, stomach, lungs, skin, kidneys, thyroid gland, and most other tissues are common, and medical science is still discovering other maladies that may be cancer-related. Find out more about this contaminant and how to remove it here.

Total Trihalomethanes (TTHMs)

3rd party independent testing found that this water utility exceeds health guidelines for this drinking water contaminant. Total Trihalomethanes (TTHMs) are the result of a reaction between the chlorine used for disinfecting tap water and natural organic matter in the water. At elevated levels, TTHMs have been associated with negative health effects such as cancer and adverse reproductive outcomes. Now a study by government and academic researchers adds to previous evidence that dermal absorption and inhalation of TTHMs associated with everyday tap water use can result in significantly higher blood TTHM concentrations than simply drinking the water does. What are the risks of drinking tap water with Total Trihalomethanes (TTHMs)? Cancer. Studies from around the world, including the United States & Europe have found that drinking tap water that carries Total Trihalomethanes increases the risk of developing cancer. In animal studies, all trihalomethanes cause liver, kidney and intestinal tumors. Find out more about this contaminant and how to remove it here.

Trichloroacetic Acid

3rd party independent testing found that this utility exceeds health guidelines for this drinking water contaminant. Trichloroacetic acid will get into your drinking water when naturally-occurring organic and inorganic compounds found in the water reacts with chlorine or other disinfectants used to purify drinking water. Trichloroacetic acid is one of the group of five haloacetic acids regulated by federal standards. What are the risks of drinking tap water with Trichloroacetic acid? Cancer & Pregnancy Issues. According to the Environmental Protection Agency (EPA), individuals exposed to the compound in excess of the "Maximum Contaminant Levels" during the duration of several years are prone to an increased risk of getting cancer. Long-term exposure to the chemical will increase your chances of acquiring a tumor. Oral exposure or the drinking of contaminated water may cause problems during pregnancy. It can also cause developmental issues to the fetus. Find out more about this contaminant and how to remove it here. 

What are the best type of filters to remove these contaminants?

Water sources can contain contaminants that impact your long term health, the taste & smell of the water and other microbiological contaminants that can actually make people sick shortly after drinking. Fortunately, there are water filtration products that remove many of the impurities from water. These filters often use activated carbon. Activated carbon is a form of carbon processed to have small, low-volume pores that increase the surface area available for adsorption of contaminants or chemical reactions. Two dominant carbon filter choices are solid activated carbon blocks and granular activated carbon filters.

Filter Design

Granular activated carbon filters have loose granules of carbon that look like black grains of sand. These black grains of carbon, are dumped into a container and the water is forced to travel through the container to reach the other side, passing by all of the grains of carbon. Solid block carbon filters are blocks of compressed activated carbon that are formed with the combination of heat and pressure. These filters force the water to try to find a way through the solid wall and thousands of layers of carbon until the reach a channel which leads the water out of the filter. Both filters are made from carbon that’s ground into small particulate sizes. Solid carbon blocks are ground even further into a fine mesh 7 to 19 times smaller than the granular activated carbon filters.

Flow Channels & Less Contact Time 

As water continually pass through Granular Activated Carbon filters, flow channels begin to develop that allows the water to flow around the carbon. Flow channels also develop between the granules, leading to less effective filtration as there’s less contact between the water and carbon. Solid carbon blocks are much tighter and won’t even let through microbial cysts like giardia and cryptosporidium (7 to 10 Microns in size). However, solid carbon block filters are so tight that they can often get plugged up with organic & non-organic matter, forcing owners to replace them on a more regular basis. This is why when you are using a Brita water pitcher filter (granular activated carbon), the filter will keep going and going long after it has stopped removing any water contaminants. 

Carbon Block vs Granulated Activated Carbon 

The granular activated carbon filters are cheap and simple to manufacture, which is why most water filtration companies choose this method for manufacturing (ex: Brita, Woder). Solid Carbon Block Filters on the other hand take longer to manufacture and are more expensive but with this expense, you get superior contaminant removal because the water must take a tortured path through thousands of layers of compressed carbon before it reaches your drinking glass.

Better Filtration

The solid carbon block filters like the one used in the Epic Smart Shield & Epic Water Filter pitchers, remove more contaminants than the granular activated carbon filters due to the larger surface area and the tighter filters, this is why Epic Water Filters has standardized on the solid carbon block design for our water pitchers and our under the sink water filter. Unfortunately, granular activated carbon filters do not do enough to reduce contaminants, this is why they are not used when there is a chance of bacteria or cysts in the water. They are truly not "Epic" so that is why we have passed on this design and let our competitors like Woder, Brita, Pur, and Invigorated Water use these loose packed carbon filters for sub-par contaminant removal.

Solid carbon block filters, on the other hand, have millions and millions of different sized pores that cause the water to take a long slow path to get through the filter, increasing the contact time that the contaminated water has with the carbon. During this contact time is when contaminants adhere to the carbon and are removed from water. This happens during a process called adsorption, the other filtration method that carbon blocks use is called depth filtration where the thickness of the filter comes into play to help remove contaminants as they have to pass through this carbon walls. 

With solid carbon block filters the contaminants are in contact with more carbon for a longer period and therefore have more time to remove stubborn contaminants like lead (Epic Pure Pitcher 99.9% removal), fluoride (Epic Pure Pitcher 97.8% removal), and PFCs (Epic Pure Pitcher 99.8% removal). Carbon blocks can remove chlorine more effectively, eliminate undesirable odors, and removal of endocrine disruptors like volatile organic compounds. The granular activated carbon particles move around, so the filter does not have as much uniformity throughout, unlike the solid carbon blocks.

Epic Pure Pitcher

April Jones

A Colorado based hiker, blogger, and water quality expert...